## APPROACHES TO DEVELOPMENT OF SALTON SEA HYDROLOGIC MONITORING AND ASSESSMENT PLAN (MAP)

UC Riverside Palm Desert, CA March 26, 2008

## **Monitoring Plan Objectives**

#### Hydrologic Monitoring Plan Goal

 Implement a data collection, analysis, management, and reporting system to inform and guide management actions for hydrologic resources of the Salton Sea ecosystem.

#### Hydrologic Monitoring Plan Objectives

- Assess and incorporate existing monitoring activities and data into a long-term monitoring program for hydrologic resources of the Salton Sea;
- Determine the condition, variability, and trends of hydrologic resources associated with the Salton Sea ecosystem;
- Establish benchmarks against which data gathered during long-term monitoring can be compared;
- Provide information to refine hypotheses of hydrologic functions and processes;
- Identify and prioritize existing data gaps, collect data using standardized methods and techniques to fill these voids, and facilitate storage, management, and distribution of data in a timely manner; and
- Integrate planning, data collection, analysis, and management activities with all other resource groups.



# Relative Historic Contribution of Inflow Sources

| Inflow Source to the Salton Sea          | Percent of Historical Annual Average Inflow |
|------------------------------------------|---------------------------------------------|
| Mexico                                   | 9.8%                                        |
| Imperial Valley                          | 76.5%                                       |
| Coachella Valley                         | 8.5%                                        |
| Local Watershed                          | 1.5%                                        |
| Precipitation directly on the Salton Sea | 3.7%                                        |
| TOTAL                                    | 100.0%                                      |





## **Total IID Drainage Inflow Distribution** East of Alamo **Drains 2.35%** Between Alamo 61% Alamo and New 4.88% River West of New 29% New **Drains 2.77%** River **Total IID** Drainage Discharge 100%

# **Current Surface Water Flow Monitoring at the Salton Sea**

| 1                | Source                   | Location                  | Agency        | Frequency    |
|------------------|--------------------------|---------------------------|---------------|--------------|
| A COLUMN TO      | Alamo River              | International<br>Boundary | IID, IBWC     | С            |
| 1000             | Alamo River              | near Niland               | USGS 10254730 | C            |
| An and of        | New River                | International<br>Boundary | USGS 10254970 | С            |
| AND RESIDENCE OF | New River                | near<br>Westmoreland      | USGS 10255550 | С            |
| AND MANAGEMENT   | Whitewater<br>River/CVSC | near Mecca                | USGS 10259540 | С            |
|                  | Salt Creek               | 0.3 mi u/s Sea            | USGS 10255550 | С            |
| MODEL PALACE     | San Felipe Creek         | near<br>Westmoreland      | USGS 10255885 | Discontinued |

# **Current Surface Water Flow Monitoring at the Salton Sea**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Source     | Location         | Agency | Frequency |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|--------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IID Drains | 7 major drains   | IID    | M         |
| THE WAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IID Drains | 18 minor drains  | IID    | Q         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IID Drains | 29 direct drains | IID    | M, study  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CV Drains  | ??               |        |           |
| DATE OF THE PARTY |            |                  |        |           |

# **Current Meteorological and Other Physical Monitoring at the Salton Sea**

|    | Parameters           | Location         | Agency    | Frequency |
|----|----------------------|------------------|-----------|-----------|
|    | Wind, precipitation, | Niland, State    | DWR/CIMIS | С         |
|    | air temperature,     | Park, Salton Sea |           |           |
| 3  | shortwave/longwave   | West, Oasis,     |           |           |
| 3  | radiation, relative  | Mecca,           |           |           |
| 1  | humidity, etc        | Calipatria       |           |           |
|    | Pan Evaporation      | Imperial Salt    | IID       | M, A?     |
|    |                      | Farm, Devil's    |           |           |
|    |                      | Hole, Three      |           |           |
|    |                      | Flags            |           |           |
|    | Salton Sea W.S.      |                  | USGS      | D         |
|    | Elevation            |                  | 10254005  |           |
| MM |                      |                  |           |           |
| 3  |                      |                  |           |           |
|    |                      |                  |           |           |

## **Monitoring Gaps**

- Species Conservation Habitat (shallow, saline ponds located on seabed)
  - Imperial Valley direct drains
  - Coachella Valley direct drains
  - Groundwater characterization and shallow groundwater fluxes
- Marine sea and shallow water hydraulics
  - Denser met data network (specifically wind)
  - Sea temperature, velocity
  - Continuous long-term monitoring velocity, temperature, elevation, salinity



## **Salton Sea Groundwater**



## **Monitoring Network Objectives**

- Define groundwater elevation, flow directions, and chemistry to enable evaluation of future changes to the Salton Sea system
- Confirm existing (baseline) groundwater conditions.
- Monitor changes in groundwater system.
- Identify and evaluate constructability issues associated with saline habitat development and future alternatives for Salton Sea Restoration.
- Utilize groundwater information to evaluate future alternatives.

## **Background – Other Studies**

- LLNL
- USGS
- Tetra Tech
- Others



# **Background – Current Understanding**

- Closed basin
- Groundwater discharges to sea
- Current groundwater contribution (AF)
- Future groundwater contribution (AF)



# Hydrostratigraphy – Coachella Valley





Figure 6-3
Conceptual Hydrogeologic
Cross Section for the Coachella Valley



\*After DWR Bulletin 108

Figure 6-2
Conceptual Hydrostratigraphy for the Coachella Valley

# Hydrostratigraphy – Southern Salton Sea



### **Conceptual Flow Zones**

- Coachella Valley
- Mountain Front (Desert Shores to Salton City)
- Badlands / San Felipe
   Creek
- Imperial Valley & Agricultural Drainage
- Salt Creek
- East Sea Springs
- Deep Groundwater Upwelling



#### **Available Data**

LLNL wells





## **Publicly Available**

- DWR
- USGS
- Others





## **Conceptual Monitoring Network**



# Conceptual Monitoring Network – Coachella Valley

- Monitoring Objectives
  - Characterize flow to/from Coachella Valley
  - Characterize vertical gradients
  - Characterize groundwater chemistry
  - Evaluate saline habitat constructability issues



# Conceptual Monitoring Network – Mountain Front (Desert Shores to Salton City)

- MonitoringObjectives
  - CharacterizeMountain FrontRecharge
  - Characterize vertical gradients
  - Characterize groundwaterChemistry



# Conceptual Monitoring Network – Badlands / San Felipe Creek

- MonitoringObjectives
  - Characterize flow to/from Badlands / San Felipe Creek
  - Characterize vertical gradients
  - Characterize groundwaterChemistry



## Conceptual Monitoring Network – Imperial Valley & Agricultural Drainage

- Monitoring Objectives
  - Characterize flow from Imperial Valley
  - Characterize vertical gradients
  - Characterize groundwater Chemistry
  - Evaluate saline habitat constructability Issues
  - Screen for Deep
     Groundwater Upwelling



# Conceptual Monitoring Network – Salt Creek

- Monitoring Objectives
  - Characterize
     discharges to / from
     Salt Creek
  - Characterize surface water / groundwater interactions
  - Track spring flows
  - Evaluate saline habitat constructability Issues



# Conceptual Monitoring Network – East Sea Springs Area

- Monitoring Objectives
  - Characterize flow to Sea from springs
  - Evaluate San Andreas
     Fault Zone
     interactions with
     Groundwater flow
  - Characterize vertical gradients
  - Characterize groundwater Chemistry



# Conceptual Monitoring Network – Deep Groundwater Upwelling



Figure 2.2: West to East geologic cross section through the deeper Salton Sea basin, approximately parallel with the US-Mexico Border (from Dutcher et al., 1972), showing inferred zones of specific yield (porosity) and groundwater temperature (°C).

#### **Data Collection**

- Water Level Elevation
- Standard physical parameters (Temp, DO, Turbidity, pH, EC, etc.)
- Groundwater Chemistry
  - General Inorganic chemistry
  - Select metals
  - Isotopes
  - Pesticides (downgradient of agricultural areas)

## **Monitoring Network**

- Utilize existing wells to the extent possible
- Drill new single completion and nested monitoring wells to:
  - Define shallow (0 50 feet bgs) groundwater conditions
  - Define deep (50 200 feet bgs) groundwater conditions
  - Collect geochemical data
  - Evaluate groundwater gradients

## **Conceptual Prioritization**

- Tier 1
  - Identify existing wells for integration into monitoring network
  - Develop understanding of shallow (0 50 feet) groundwater flow conditions
  - Develop understanding of shallow (0 50 feet) groundwater chemistry conditions
  - Utilize network to evaluate and predict constructability issues for any Saline Habitat Complex activities
  - Install shallow groundwater monitoring facilities
- Tier 2
  - Integrate vertical dimension into Tier 1 above
  - Evaluate vertical groundwater flow paths, chemistry gradients, and geothermal interactions
  - Install deeper (50 200 feet) groundwater monitoring facilities
- Tier 3
  - Complete deep exploratory borings
  - Integrate conceptual model (3 dimensions)
  - Develop numerical model (steady-state and transient)

# Water Quality Monitoring Goals: Characterize and track.....

- ...water quality of Salton Sea and various water supplies to Sea and future projects (i.e., SCH, wetlands).
- ...sediment quality as a determinant of water quality and potential toxicity.
- ...tissue chemistry of fish and invertebrates as measures of human health and ecological exposure.

## **Water Quality Monitoring Program**

- Species Conservation Habitat: Focused Monitoring
  - Water supply: Drains, rivers
  - Sediment: In place
  - Water management: Retention time, seasonal flows.
- Existing and future Sea
  - Lake water and sediment. Track poor water quality events (hydrogen sulfide, DO, stratification)
  - Bioaccumulation in fish and invertebrates (selenium)
  - Rivers, Colorado River supply, and direct drains as source waters.

## Tiered Water Quality Monitoring Approach

- Tier 1. Minimum characterizations: Rely on all existing programs for all water quality characterizations. No increase in frequency or locations (e.g. quarterly in Sea).
- Tier 2. Selectively add parameters, stations, and frequency (e.g., seasonally weekly) to adequately characterize all SHP inflows, sediments, and main Salton Sea water and sediment quality.
- Tier 3. Add focused studies on sulfide formation or selenium fate and transport (for example).

